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Abstract 
This paper compares airspace design solutions 

for dynamically reconfiguring airspace in response to 
nominal daily traffic volume fluctuation. Airspace 
designs from seven algorithmic methods and a 
representation of current day operations in Kansas 
City Center were simulated with two times today's 
demand traffic. A three-configuration scenario was 
used to represent current day operations. Algorithms 
used projected unimpeded flight tracks to design 
initial 24-hour plans to switch between three 
configurations at predetermined reconfiguration 
times. At each reconfiguration time, algorithms used 
updated projected flight tracks to update the 
subsequent planned configurations. Compared to the 
baseline, most airspace design methods reduced delay 
and increased reconfiguration complexity, with 
similar traffic pattern complexity results. Design 
updates enabled several methods to as much as half 
the delay from their original designs. Freeform 
design methods reduced delay and increased 
reconfiguration complexity the most. 

Nomenclature 
ci = configuration index 

d = average total flight delay 

n+ = aircraft gained 

n- = aircraft lost 

N =  combined aircraft transfer complexity 

si = simulation iteration index 

v+ = % volume gained 

v- = % volume lost 

V = combined volume transfer complexity 

α = % flight tracks within 2 miles of boundary 

β = avg dist between flow intersections and bounds 

γ = num flights with less than 2 min dwell time 

Introduction 
Airspace management concepts attempt to 

mitigate required traffic flow management and allow 
more user preference and traffic flexibility.  One 
form of airspace management is Dynamic Airspace 
Configuration, that is reconfiguring airspace 
boundaries to correspond with the prevailing demand 
traffic and allow more throughput. Today's traffic 
flexibility is limited in part due to largely static 
airspace design. New algorithmic methods of 
airspace design are being developed to allow airspace 
to change more dynamically and conform to more 
flexible traffic. A prior comparison of algorithm 
generated airspace configurations identified strengths 
and weaknesses of three airspace partitioning 
algorithms [1,2]. The different algorithms each had 
different strengths including reduced flight delay, 
reduced airspace complexity, and more balanced 
workload among airspace sectors. 

However, there were some technical limitations 
in the previous comparison. Currently, airspace is 
reconfigured to accommodate traffic demand, and in 
the future, it will reconfigure more dynamically. 
However, as a first step, this previous analysis only 
compared static configurations. Due to airspace 
design algorithm limitations, the number of sectors 
was not fixed between compared configurations, 
making it difficult to assess their relative benefits. 
These algorithms have since evolved to address 
identified weaknesses from the comparison as well as 
address other considerations such as complexity due 
to reconfiguration and traffic pattern interactions with 
airspace boundaries. In addition, several other 
algorithms have since matured to a level sufficient to 
participate in a comparison study. 

This paper presents a next round comparison of 
newly improved airspace design solutions for 
dynamically reconfiguring airspace in response to 
nominal daily traffic volume fluctuation. Improved 
versions of the three algorithmic airspace design 
methods from the previous study and five additional 
methods were compared. Each method designed 



three-configuration airspace solutions with projected 
simulated flight tracks in Kansas City Center at two 
times today’s traffic levels. In addition, each method 
used updated traffic projections at each 
reconfiguration time to update subsequent planned 
reconfigurations. Data analysis compared not only 
airspace design benefits between different 
algorithmic methods, but between design updates 
from a single method to assess the benefit of 
dynamically updating planned configurations. 
Additional compared metrics included traffic pattern 
complexity with respect to airspace boundaries and 
reconfiguration complexity. 

This paper is organized as follows. The 
Background section provides background on airspace 
design research and specific design methods 
compared in this paper. The Method section 
describes the methods, including experiment setup, 
scenarios, and metrics. Detailed and summary results 
are described in the Results section. The paper ends 
with Conclusions. 

Background 
Currently, airspace in both the United States and 

Europe is partitioned into functional blocks that may 
be combined into fewer large sectors when traffic 
volume is low or split into more small sectors when 
traffic volume is high. This is actually a simple and 
flexible method of adapting to traffic volume 
fluctuation.  However, configuration schedules are 
generated days in advance based on estimated traffic 
demand and tactical changes to the configuration 
schedules are based on managers' personal 
experience and judgment. Staffing constraints limit 
the number of sectors that may be open within a 
particular group of sectors for which each controller 
is trained. In the United States, these groups of 
sectors are called areas of specialization (AOS). This 
also limits feasible combinations of functional 
airspace blocks within a single area. In addition, 
overloads may occur in sectors that cannot be further 
split.  

One body of research is developing algorithms 
to build good realistic functional block-based 
configuration schedules rather than relying on human 
judgment [3-6]. Other research focuses on 
redesigning the airspace boundaries themselves [7-
14]. Many of these methods have performed self-
assessments and a few have been compared to each 

other [1,2], but the assessments focused on the 
designs themselves and not the cost of 
reconfiguration. 

A human-in-the-loop study conducted at NASA 
Ames tested the feasibility of reconfiguring by 
moving an airspace boundary on-demand rather than 
combining and splitting functional airspace blocks 
[15]. The study found that the reconfiguration 
operation itself was feasible. However, certain 
characteristics of boundary designs with respect to 
traffic pattern geometry and of reconfiguration from 
one design to the next tended to increase controller 
workload and decrease acceptability. Many airspace 
design algorithms have since incorporated these 
traffic pattern and reconfiguration complexity 
considerations into their methods.  

This paper compares delay reduction benefits, 
traffic pattern complexity, and reconfiguration 
complexity of seven airspace design algorithms that 
use different approaches. Three of these airspace 
design methods attempt to address the 
reconfiguration complexity considerations by using 
elements of the currently used functional airspace 
blocks in their design. DAU Slices modifies a given 
configuration by defining five nmi slices of airspace 
along the shared edge of a sector pair as Dynamic 
Airspace Units (DAUs) [16] to effectively move 
airspace boundaries in five nautical mile increments 
between sector pairs. CombineSplit uses a set of 
given functional airspace blocks and desired number 
of sectors as inputs to group the sectors into 
configurations [17]. FlightLevel [18] starts with the 
AOS boundaries, and partitions the AOS's vertically 
by flight level (1,000 ft increments) to achieve the 
desired number of sectors for a configuration. By 
contrast, CombineSplit has the option of recombining 
the base sector units irrespective of AOS boundaries. 
Inter-AOS reconfiguration is assumed possible in the 
future with the development of generic airspace tools 
and procedures that make it easier for individual 
controllers to work a larger variety of airspace and 
remain current [19]. 

Four other airspace design methods compared 
were more freeform and did not use any elements of 
the current functional airspace block design. A new 
Graph-based method [14] partitions a graph 
representation of the filed flight plan structure and 
assigns airspace to each graph partition trying to keep 
intersections and major flow paths away from sector 



boundaries. The final three methods compared are 
improved versions of those compared in previous 
work [1,2]. These are SectorFlow, CellGeoSect, and 
Voronoi described below. 

SectorFlow [10] clusters flight track points 
attempting to minimize airspace complexity 
parameters. Airspace is then assigned to each flight 
track cluster. An improved version of SectorFlow 
[20] compared in this paper addresses flow pattern 
complexity by including several parameters that 
helped the algorithm keep flow intersections away 
from sector boundaries and using a gradient search to 
refine the boundaries after the initial partition. 

CellGeoSect is a hybrid of an airspace cell 
clustering method compared in previous work [11] 
and an airspace splitting method called GeoSect [21] 
used to address traffic pattern complexity. The cell 
clustering method represents the airspace as a 
tessellation of hexagonal cells and clusters these cells 
to maximize flow connectivity within and balance 
flight count between clusters. GeoSect modifies the 
resulting design by sequentially removing and 
redefining the boundary between each pair of sectors 
to avoid geometric constraints such as the length and 
boundary crossing angles of major flows.  

Voronoi [12] represents the airspace using a 
Voronoi Diagram. A Genetic Algorithm then 
optimizes the Voronoi Diagram representation to 
minimize sector overloading.  An improved version 
of this method, used in this comparison, uses a multi-
stage process to incorporate different kinds of 
constraints into the overall optimization [22]. Some 
constraints added to address traffic pattern 
complexity include trying to keep intersections and 
major flow paths away from sector boundaries and 
minimizing the number of low dwell time flights. 

Method 
The following subsections describe the 

experiment setup and metrics used to compare the 
seven airspace design methods described above. 

Experiment Setup 
The experiment focused on airspace above 

24,000 ft within Kansas City Center (ZKC) in the 
United States. ZKC presented a good focus center 
because its airspace design is moderately complex. 

The entire center shares a common split between low 
and high altitude airspace of 24,000 ft. In current 
operations, the airspace above 24,000 ft is routinely 
reconfigured between combinations of 27 functional 
airspace blocks (base sectors) within six areas of 
specialization (AOS). Figure 1 shows the current 
ZKC sector design, where color indicates AOS and 
the altitude split between high and super-high sectors 
is shown with the super-high altitude sector labels. 

 

Figure 1. Current ZKC Sector Design 

The altitude split between high and super-high 
altitude sectors ranges between 35,000 and 38,000 ft. 
Higher altitude over-flights (above 33,000 ft), 
passing through the center, dominate ZKC's traffic 
patterns. 

Reconfiguration Scenarios 
To reduce experiment complexity, all algorithm 

generated reconfiguration scenarios derived from a 
three-configuration simplification of historic ZKC 
airspace operations on 2/8/2007, a nominal day with 
little weather impact. Lai and Zelinski [23] describes 
the procedure for processing operational sector 
combination data and identified three configurations 
as a reasonable baseline representation for 2/8/2007. 
All reconfiguration scenarios had the same 
reconfiguration times and numbers of sectors in each 
configuration as the Baseline. Given the number of 
sectors and projected track data for each 
configuration time period, each algorithm was free to 
partition the ZKC airspace above 24,000 ft both 
laterally and vertically. This was a design 



improvement over the previous study where 
algorithms partitioned only laterally within two 
predefined altitude layers. 

Figure 2 diagrams the reconfiguration scenario 
design. Each box represents a configuration designed 
for the corresponding time periods. Orange boxes 
identify active configurations. Black boxes identify 
planned configurations that were updated before they 
could be implemented. The reconfiguration times, 
shown in Central Standard Time, are identical to the 
Baseline. First, airspace design algorithms use 
projected flight tracks for the entire day to design an 
initial three-configuration scenario, labeled as Config 
1, 2, and 3, with 6, 24, and 19 sectors above 24,000 
ft, respectively. Flight traffic is simulated through 
Config 1 from 1:45 AM to 8:15 AM, at which point 
the airspace design algorithm may use updated 
projected flight tracks to modify the remaining two 
configurations. These modified configurations are 
labeled Config 2ʹ′ and 3ʹ′. The flight traffic simulation 
continues through Config 2ʹ′ from 8:15AM to 
9:00PM, at which point the airspace design algorithm 
may used updated projected flight tracks to modify 
the last configuration, Config 3ʹ′ʹ′. The simulation 
completes through Config 3ʹ′ʹ′ from 9:00PM to 
1:45AM. 

 

Figure 2. Reconfiguration Scenario Design 

 

Sector capacities for each configuration were 
assigned using the method presented in Welch et al 
[24]. This capacity estimation method validated well 
with respect to historical data using a simple 
quadratic model based on sector volume and the 
average flight transit time through the sector during 
the peak traffic period. The Welch capacity 
estimation method provided an easily implementable 
improvement over the previously used method based 
purely on average flight transit time, which tended to 
underestimate capacity for large sectors and 

overestimate capacity for small sectors. The Welch 
model was used to assign Baseline sector capacities 
as well. Even though Baseline configurations were 
not modified at each reconfiguration, updated 
projected flight tracks required that the sector 
capacities be updated at each reconfiguration. 

Simulation 
Simulations were completed using the Airspace 

Concept Evaluation System (ACES) [25]. ACES has 
been validated to be a good modeler of en-route 
trajectories producing similar delay results to real-
world operational statistics for good-weather days 
[26, 27]. ACES modeled gate-to-gate flight 
operations on airport surfaces and in terminal and en-
route airspace. Air traffic control and traffic flow 
management models controlled flights during these 
operations to ensure that airspace capacity constraints 
were not violated. Lower fidelity models were used 
for ground and airport modeling and higher fidelity 
models were used for en-route trajectory modeling, 
which extended from departure meter fixes to arrival 
meter fixes. 

The only constraints imposed in simulation were 
sector capacities for ZKC airspace above 24,000 ft. 
Airport and airspace outside of the design scope were 
unconstrained. It is very difficult to decompose the 
cause of delays simulated in ACES. Therefore, 
unconstraining the airports and airspace outside of 
the design scope ensured that all simulated delay was 
caused by the ZKC reconfiguration scenario being 
tested. 

ACES simulated flight tracks from the 2/8/2007 
flight schedule. Without capacity constraints from 
airports or neighboring centers or weather impacts, 
the simulated 2007 traffic produced negligible flight 
delays. To stress the simulation into producing more 
delay for analysis, a demand generation tool, 
AvDemand [28], was used to create a two-times 
traffic schedule by cloning flights from the 2/8/2007 
schedule. AvDemand also time-shifted flights within 
an hour of the original schedule to reduce unnatural 
demand peaks.  

At the time of this experiment, airspace design 
algorithms had not been fully integrated into ACES. 
Therefore, the iterative simulation process in Figure 3 
was used to mimic a closed loop simulation of the 
Figure 2 reconfiguration scenarios. 



 

Figure 3. Iterative Simulation Process 

 

Each row of green boxes represents a separate 
ACES simulation. First, ACES generated 
unconstrained flight tracks by simulating the 2X 
2/8/2007 flight schedule without any capacity 
constraints. Airspace design algorithms used the 
unconstrained flight tracks to design three initial 
configurations. ACES simulated flight traffic subject 
to Config 1, 2, and 3 constraints through the end of 
Config 1. Projected flight tracks from this point in the 
simulation included all traffic modification incurred 
within the Config 1 time period. Airspace design 
algorithms used these updated projected flight tracks 
to design Config 2ʹ′ and 3ʹ′. ACES simulated flight 
traffic subject to Config 1, 2ʹ′, and 3ʹ′ constraints 
through the end of Config 2ʹ′. Airspace design 
algorithms used updated projected flight tracks to 
design Config 3ʹ′ʹ′. Finally, ACES simulated flight 
traffic subject to Config 1, 2ʹ′, and 3ʹ′ʹ′ all the way to 
the and of Config 3ʹ′ʹ′.  Even though only the final 
iteration from Figure 3 represents the full closed loop 
scenario from Figure 2,  all simulations were allowed 
to complete to analyze the effect each update had on 
airspace design performance. 

Metrics 
Metrics were designed to assess the performance 

of individual configuration designs and 
reconfigurations between them. Three categories of 
metrics include, delay, traffic pattern complexity, and 
reconfiguration complexity. Delay is a user benefit 
metric. Traffic pattern complexity metrics assess 
properties of the traffic patterns with respect to 
airspace boundaries that may affect controller 

workload. Reconfiguration complexity metrics assess 
the transition cost from one configuration to the next. 
Metric details are described below. 

Delay 
Delay is not only costly to airlines and 

passengers, but it increases uncertainty by altering 
flight plans. Reduced delay relative to the current-day 
baseline simulated with 2x traffic quantifies a user 
benefit for a set of airspace configurations.  

ACES traffic flow management (TFM) monitors 
sector capacity and projected sector demand with a 6-
hour look-ahead time window. TFM issues an entry 
time restriction to the first flight projected to exceed a 
particular sector's capacity. Time restrictions may 
propagate and accumulate as the flight passes through 
many sectors. Delay may be absorbed en-route with 
path stretching maneuvers or at the gate as departure 
delay. At the end of each simulation, the total delay 
for a flight is the difference between its scheduled 
and actual gate arrival times.  

Because airports and airspace outside ZKC and 
below 24,000 ft were unconstrained, all flight delay 
was due to high altitude ZKC airspace capacity 
constraints. However, it is difficult to quantify the 
individual delay caused by a particular ZKC 
configuration. Therefore, average total delays were 
computed for each three-configuration simulation. 
Let d(si) be the average total delay for ith iteration 
simulation si. There are three simulation iterations, s1, 
s2, and s3, shown as [Config 1, Config 2, Config 3],  
[Config 1, Config 2ʹ′, Config 3ʹ′], and [Config 1, 
Config 2ʹ′, Config 3ʹ′ʹ′] in Figure 3. 

Traffic Pattern Complexity Metrics 
Original airspace design algorithms were mostly 

concerned with minimizing and balancing sector 
traffic load. However, airspace design must also 
accommodate traffic pattern geometry to minimize 
controller cognitive complexity. Most algorithms 
compared in this study have incorporated some 
method of aligning the airspace design with traffic 
patterns to minimize this complexity. The following 
metrics measure traffic pattern complexities with 
respect to sector boundaries. 

Controllers prefer major flows and their 
intersections to be well within sector boundaries. To 
guarantee separation, controllers must be aware of 
flights not only within a sector, but also just outside 
the sector. Brinton and Cook [29] show how as-flown 



flight paths have a statistically significant lower 
percentage of flight time within two miles of current 
sector boundaries (designed to accommodate these 
paths) than great-circle or wind-optimal paths. The 
number of aircraft within a threshold distance of a 
sector boundary was also included in 17 out of 52 
original dynamic density metrics found to be 
significant for measuring airspace complexity [30]. 
Ideally, flows should stay at least three to five nmi 
inside the sector boundary to avoid magnifying flight 
awareness workload of neighboring sectors and to 
leave room for maneuvering but using a two nmi 
threshold captures flights that clearly require extra 
controller attention. 

Let α(sicj) be the percentage of flight tracks 
within two miles of a sector boundary for the jth 
configuration in the ith simulation iteration. Let α for 
a particular method be the average α(sicj) of all 
configurations for all iterations weighted by 
configuration duration. 

Controllers require some time to become 
familiar with a flight entering the sector before it 
approaches a major intersection. The more time they 
have, the more efficiently they may control the flow 
safely through the intersection. Therefore, 
intersections should be away from sector boundaries. 
Brinton and Cook [29] show how there are 
statistically significantly fewer as-flown flight 
intersections less than ten miles from a sector 
boundary than great-circle or wind-optimal path 
intersections. Jung et al [31] found that increased 
workload during stable configuration periods 
correlated to a lower average distance between traffic 
flow intersections and sector boundaries. 

Let β(sicj) be the average distance between 
traffic flow intersections and sector boundaries for 
the jth configuration in the ith simulation iteration. 
Let β for a particular method be the average β(sicj) of 
all configurations for all iterations weighted by 
configuration duration. 

Jung et al [31] also found that increased 
workload during stable configuration periods 
correlated to the number of flights with short dwell 
time within a sector.  When a flight spends very a 
small amount time within a sector, controllers often 
coordinate to directly handoff the flight to the next 
sector without taking ownership. This causes 

increased controller workload with no additional 
service provided to the flight. 

Let γ(sicj) be the average number of short dwell 
flights (spending less than two minutes within the a 
sector) per quarter hour per sector for the jth 
configuration in the ith simulation iteration. 

Reconfiguration Complexity Metrics 
It is assumed that reconfiguration incurs an 

operational cost related to transitioning from one 
configuration to another. Homola et al [32] showed 
how new on-demand reconfigurations could be 
implemented to balance sector traffic load and 
minimize over-capacity time periods without 
compromising safety, but at the cost of increasing 
controller task-load and workload ratings. Lee et al 
[15] and Jung et al [31] identified percent airspace 
volume and number of aircraft transferred as the 
primary contributors to reconfiguration workload for 
the same study. Percent airspace volume transferred 
impacts controller situational awareness and number 
of aircraft transferred impacts controller task-load of 
handing off aircraft to their new sectors. 

The first step for computing reconfiguration 
metrics between two configurations is to map their 
sectors to each other. First, sector pairs are mapped in 
order of decreasing intersection volume.  Then, 
sectors with no intersecting volume are mapping in 
order of increasing Housdorff distance. Housdorff 
distance measures how far one sector is spatially 
shifted from another [33]. Consecutive configurations 
with different numbers of sectors will have some 
unmapped sectors assumed to appear or disappear as 
the sector number increases or decreases, 
respectively. Let υ+(k1,k2) and υ-(k1,k2) be the volume 
gained and lost for sector pair (k1,k2) given as 

υ+(k1,k2)  =  υ(k1) - υ∩(k1,k2) 

υ-(k1,k2)  =  υ(k2) - υ∩(k1,k2) 

where k1 is the old sector, k2 is the new sector, and 
υ∩(k1,k2) is the shared volume between k1 and k2 seen 
in figure 4. 

 

Figure 4. Volume Gained and Lost 



Let v+(k1,k2) and v-(k1,k2) be the percent volume 
gained and lost with respect to the old sector volume. 

v+(k1,k2) =  υ+(k1,k2) / υ(k1) 

v-(k1,k2) =  υ-(k1,k2) / υ(k1) 

For unmapped appearing sectors, υ+(−,k2)=υ(k2)  
and v+(−,k2)=100%. For unmapped disappearing 
sectors, υ-(k1,−)= υ(k1) and v-(k1,−)=100%. 

Let V(k1,k2) be a weighted combined volume 
transfer complexity given by 

V(k1,k2) = wv+ v+(k1,k2) + wv- v-(k1,k2) 

where wv+ and wv- are weighting factors. 

Operational reconfigurations can be completed 
in roughly five minutes [15]. Therefore, the numbers 
of aircraft gained (n+(k1,k2,t)) and lost (n-(k1,k2,t)) 
between k1 and k2 are the numbers of unique aircraft 
flying in υ+(k1,k2) and υ-(k1,k2), respectively,  during 
the five minutes preceding reconfiguration time t. Let 
N(k1,k2,t) be a weighted combined aircraft transfer 
complexity given by 

N(k1,k2,t) = wn+ n+(k1,k2,t) + wn- n-(k1,k2,t) 

where wn+ and wn- are weighting factors. 

Lai and Zelinski [23] found that in current 
reconfiguration operations, there is an average of two 
aircraft gained and two aircraft lost. Clustering 
operational reconfigurations into the simplified three-
configuration set used in this study altered these 
values because the clustered reconfiguration times 
were no longer coordinated with the traffic. The 
aircraft gained and lost metrics are very sensitive to 
reconfiguration time due to traffic fluctuation. In 
operation, managers would be free to implement a 
reconfiguration any time within a range to minimize 
the aircraft transfer complexity. Therefore, N(k1,k2,t) 
was calculated for t ranging from thirty minutes 
before to thirty minutes after the reconfiguration 
design time in five-minutes increments. It was 
assumed that the reconfiguration could occur within 
any of these five-minute intervals, but the entire 
reconfiguration must be completed within the same 
interval. This assumption made component-based 
airspace design methods such as Baseline, 
CombineSplit, DAU Slices, and FlightLevel, that 
could reconfigure incrementally, more comparable to 
the freeform design methods that may require the 
reconfiguration to occur all at once.  It was also 

assumed that managers would choose the time that 
minimized the maximum aircraft transition workload. 

Results 
The following subsections present results for the 

Baseline and designs from seven airspace design 
methods. 

Delay (d) 
Delay measured the benefits of each airspace 

design method from the user prospective. Lower 
delay demonstrated user benefits. Figure 5 shows the 
average total delay for each of the three-configuration 
simulation iterations shown in Figure 3. Five of the 
methods produced lower delay than Baseline with 
their original designs in s1. After the first design 
update, all but CombineSplit reduced delay below 
Baseline. The most significant delay reduction is due 
to the first design update, between s1 and s2.  Very 
little if any delay reduction is achieved with the 
second design update, between s2 and s3. CellGeoSect 
showed the most user benefit, reducing the Baseline 
delay by more than two thirds. In general, freeform 
methods produced lower delays than methods using 
Baseline components. 

 

Figure 5. Average Total Delay 



Traffic Pattern Complexity 
Flight Track Percentage Close to Boundary (α) 

The percentage of flights tracks within two nmi 
of a sector boundary (α) was computed for each 
configuration and iteration. Figure 6 shows average α 
results. 

 

Figure 6. Average α Results  

 

Briton and Cook [29] calculated distributions of 
percent flight time within two nmi of nation-wide 
sector boundaries for as-flown tracks with respect to 
the current airspace design and with respect to their 
2008 version of SectorFlow airspace design method. 
The Baseline'08 and SectorFlow'08 values in Figure 
6 were calculated by combining the current airspace 
design and 2008 SectorFlow design distributions 
from Figure 6 in [29]. Even though the ZKC Baseline 
has lower α than the nation-wide Baseline'08, the 
improvement from SectorFlow'08 to SectorFlow is 
clear. All other methods besides FlightLevel are 
between Baseline and Baseline'08. The improvement 
of FlightLevel over Baseline is because the method 
uses existing AOS footprints, which have larger 
lateral area than most individual Baseline sectors. 
The overall results indicate that all methods 
compared in this study do a sufficient job of keeping 
major flows away from sector boundaries. 

Flow Intersection Boundary Proximity (β) 
Figure 7 shows β for each airspace design 

method. The β values for Baseline'08 and 
SectorFlow'08 were calculated from Figure 8 in [28] 

by multiplying the x and y axis for each column and 
summing. Baseline and Baseline'08 are very similar 
and all methods except SectorFlow'08 have higher β 
than both Baselines. The SectorFlow improvement 
over SectorFlow'08 moved flow intersections 2.4 
miles farther from sector boundaries on average, 
which is approximately 20 seconds of flight time. 
Just as with α, FlightLevel has the best β values due 
to it's use of AOS footprints. 

 

Figure 7. Average β  Results 

 

Number of Short Dwell Flights (γ) 
All of the design methods indirectly try to 

maximize average flight dwell time through each 
sector because it is directly related to maximizing 
sector capacity. However, only Voronoi explicitly 
tried to minimize the number of short dwell flights. 
Figure 8 shows γ averages and quartiles for each 
airspace design method. Voronoi and CombineSplit 
are the methods with the most similar or lower γ 
values than Baseline. CombineSplit is very similar to 
Baseline because it uses the same base airspace 
volumes. Voronoi is similar or better than Baseline 
because it is the only method that explicitly tried to 
minimize the number of short dwell flights. 

FlightLevel sticks out with γ values that are 
consistently more than twice that of Baseline. Due to 
FlightLevel vertical partitioning, as the number of 
sectors increases, sector vertical range decreases. The 
difference in γ between FlightLevel and Baseline is 
entirely due to climbing or descending flights passing 



through sectors spanning only two or three flight 
levels. This did not negatively affect FlightLevel's α 
or β because distances for these metrics are measured 
relative to lateral boundaries only. 

 

Figure 8. Averages and Quartiles for γ  Results  

 

DAU Slices also had a high maximum γ, which 
is surprising because the method made minimal 
modifications to Baseline designs. However, these 
modifications did not explicitly consider traffic 
pattern complexity and sometimes resulted in sharp 
boundary angles or panhandles. DAU Slices results 
demonstrate how small changes can have a large 
impact. 

Reconfiguration Complexity 
Volume Transition Complexity (V) 

Figures 9 and 10 show averages and quartiles of 
all V between pairs of mapped sectors for the first 
and second reconfiguration, respectively. V was 
calculated using wv+ = wv- = 0.5. 

As seen in Figure 9, only FlightLevel has lower 
V than Baseline. All other methods have slightly 
higher V than Baseline and freeform methods have 
higher V than those using Baseline components. This 
trend is exaggerated in the second reconfiguration 
seen in Figure 10. Most methods produce more 
varied results than Baseline. High maximums were 
caused by mapped sector pairs with little or no 
overlapping volume. V tended to be larger in the 

second reconfiguration than the first for two reasons. 
V is a weighted percentage of the sector size prior to 
reconfiguration and c2 sector sizes were the smallest. 
Also, the second configuration reduced the number of 
sectors causing volume gained to dominate V, 
whereas volume lost dominated V in the first 
reconfiguration. There was no limit on how much 
volume a sector could gain but the most volume a 
sector could lose was 100%. 

 

Figure 9. V Results for First Reconfiguration 

 

 

Figure 10. V Results for Second Reconfiguration 



Aircraft Transition Complexity (N) 
For each simulation iteration and 

reconfiguration, the reconfiguration time t used for N 
calculation was the time that minimized the 
maximum N value. The N calculations used wn+ =1 
and wn- =0.2 assuming that accepting and becoming 
familiar with new aircraft requires much more 
workload than simply handing-off aircraft to another 
sector. Figures 11 and 12 display N averages and 
quartiles for the first and second reconfiguration, 
respectively. 

 

Figure 11. N Results for First Reconfiguration 

 

 

Figure 12. N Results for Second Reconfiguration 

All methods have very similar N values in the 
first reconfiguration seen in Figure 11. All averages 
are very close to two and only Voronoi has a 
maximum greater than the rest, by just one aircraft 
transfer. The second reconfiguration has much more 
variation between methods.  Figure 12 shows 
generally higher N values for freeform methods than 
those using Baseline components. Only 
CombineSplit has consistently lower second 
reconfiguration N than Baseline. By contrast, 
SectorFlow and Voronoi produce two to three times 
higher N than Baseline. 

Results Summary and Discussion 
Average airspace design performance is 

summarized as a percent increase or decrease from 
Baseline in Table 1. Yellow cells with values close to 
zero are similar to Baseline. Red cells with negative 
values are worse and green cells with positive values 
are better than Baseline. Darker shaded red and green 
cells have increasingly worse or better results, 
respectively. Delay performance, d, is based on d(s3) 
from Figure  5. Traffic pattern complexity 
performances are based on values from Figure 6 for 
α, Figure 7 for β, and averages from Figure 8 for γ. 
Reconfiguration complexity performances are based 
on averages of the averages from Figures 9 and 10 
for V and from Figures 11 and 12 for N. 

 

Table 1. Airspace Design Performance Summary 
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d 23 -57 25 18 30 68 58 
α -13 -4 30 -16 -15 -17 -8 
β 0 6 35 12 6 9 2 
γ -22 2 -88 -22 -29 -25 16 
V -18 -11 12 -29 -56 -55 -100 
N -56 11 -2 -85 -112 -90 -176 
 

Worse               Similar                Better 
       
 

The ultimate goal of each algorithm was to 
provide user benefits by reconfiguring airspace. The 
results show positive delay reduction benefits (d) in 
all but one algorithm, achieving the algorithms' goal. 



A few algorithms do better than others at minimizing 
traffic pattern complexity (α, β, γ), but all do a fairly 
decent job. In general, algorithms that aggressively 
change the airspace show more delay reduction 
benefits but at higher reconfiguration costs (V, N). 
The reconfiguration costs are expected and are 
acceptable as long as they are manageable. 

The three methods using Baseline elements 
performed very differently. DAU Slices achieved 
modest benefits with modest negative effects to 
traffic pattern and reconfiguration cost. This was 
expected as DAU Slices is the most conservative 
method, designed to allow small changes to existing 
airspace design at high reconfiguration frequency. 

CombineSplit was the only method to worsen d. 
All other CombineSplit metrics are similar to 
Baseline. This method was designed for a more 
tactical application, suggesting configurations every 
15 minutes over a two-hour horizon. CombineSplit 
actually decreased delay in a study comparing DAC 
benefits when applied to a more tactical two-hour 
weather rerouting scenario when number of sectors 
remained the same [34]. 

FlightLevel is the most unique case with widely 
varying results. It achieved modest d improvement 
without negatively affecting reconfiguration 
complexity. However, the traffic pattern results 
suggest that more research is needed to determine if 
FlightLevel configurations are feasible.  FlightLevel 
significantly improved α and β metrics because these 
metrics did not consider vertical boundaries. The 
significantly worsened γ due to flights climbing or 
descending through sectors only a few flight levels 
thick may not be acceptable.  

Most recent freeform algorithm development has 
focused on improving traffic pattern complexity. The 
improvement of SectorFlow from SectorFlow'08 in 
this area was demonstrated in the Traffic Pattern 
Complexity subsection. The most aggressive 
freeform methods (Voronoi, SectorFlow, and 
CellGeoSect) produced the greatest delay reduction 
benefit, but they also significantly increased 
reconfiguration complexity. Voronoi was the only 
method to reduce delay relative to Baseline without 
negatively affecting traffic pattern complexity, 
making this the most attractive method if the 
reconfiguration complexity increase is manageable. 
Reconfiguration complexity thresholds when using 

DataComm-based controller tools such as those used 
in [15] have yet to be determined. With the right 
controller tools and further algorithm refinement to 
reduce reconfiguration complexity, achieving the 
higher benefits of these more aggressive methods 
may be feasible. 

Conclusions 
A fast-time simulation study compared the 

performance of solutions from new airspace design 
methods to a representation of current day dynamic 
airspace operations. Three categories of metrics 
compared delay reduction benefits, traffic pattern 
complexity, and reconfiguration complexity. Most 
methods achieved benefits by decreasing delay, 
which was augmented by allowing strategic airspace 
design updates. Most methods also did a reasonable 
job of keeping traffic pattern complexity low. 
Methods using design elements from Baseline had 
more modest benefits and reconfiguration 
complexity. Freeform airspace design methods 
achieved the highest benefits and highest increase in 
reconfiguration complexity. Future research is 
needed to determine if high reconfiguration 
complexity is acceptable given the right controller 
tools. Airspace design methods may also further 
refine their algorithms to minimize reconfiguration 
complexity. 
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